Wall & Main


My perspectives as an investor and consumer

A glimpse into the future

dettmer3_1This is the debut of a weekly post, “A glimpse into the future” where I present five research findings as published in various scientific journals.  These projects represent the cutting edge of scientific research.

Advancements in science and technology form the foundation for future economic growth.  Many of these projects are a decade or two from producing applications or products for consumer use.  The ones that make it could significantly improve our quality of life.  As an investor, some of these may serve as candidates for sizeable returns.

  1. Fluorescent cancer cells could guide brain surgeons. Gliomas are malignant brain tumors that arise from glial (supporting) cells of the brain. Gliomas are often resistant to chemotherapy. These tumors grow fine extensions that infiltrate normal brain tissue and, in addition, individual tumor cells can form satellites in surrounding tissue. Therefore, it is almost impossible to remove the tumor tissue completely by surgery. Yet, radical surgical removal of the tumor would substantially improve the prognosis of patients.  The scientists took advantage of the fact that tumors cover their increased energy needs, among other things, by taking up large amounts of the blood protein albumin. The researchers attached a fluorescent substance (5-aminofluorescein) to albumin, which is distributed throughout the body via the bloodstream and eventually accumulates in the brain tumor. Laser light causes the substance to glow and makes the fine extensions of the tumor visible.  The scientists tested the albumin method in thirteen patients with malignant gliomas. In nine cases it was possible to remove the fluorescent tumor tissue completely thanks to the intensive yellow-green light signal.  The researchers calculated that the probability of the glowing tissue being tumor cells is 97 percent.  Tolerability and effectiveness of the staining method will be validated next year in a larger study involving several hospitals.
  2. Worrying about hard drive failures may be a thing of the past. Physicists at the University of Leeds and scientists at IBM Research’s Zurich lab have made new advances in researching a new kind of memory, called  ‘racetrack’ memory, which could become the standard method of storing information on home computers. Racetrack memory, a concept invented by Stuart Parkin at IBM Research’s Almaden Lab, has no moving parts – instead it is the information which moves. Using a kind of physics called spin transfer, scientists use electrons (in the form of electrical current) to switch the magnetism of the domains, pushing them to a different location along a nanowire.  Racetrack memory looks to combine the benefits of flash – no moving parts, with that of a hard drive – low cost.  It is significantly faster than hard disks as there are no ‘seek’ times when the head has to search the disk for information.  Racetrack memory in a computer is estimated to be 100 times cheaper per bit than flash.
  3. A battery powered by viruses could help run your car or electronic devices. MIT researchers have shown they can genetically engineer viruses to build both the positively and negatively charged ends of a lithium-ion battery. The new virus-produced batteries have the same energy capacity and power performance as state-of-the-art rechargeable batteries being considered to power plug-in hybrid cars, and they could also be used to power a range of personal electronic devices, said Angela Belcher, the MIT materials scientist who led the research team.  The new batteries could be manufactured with a cheap and environmentally benign process: The synthesis takes place at and below room temperature and requires no harmful organic solvents, and the materials that go into the battery are non-toxic.Now that the researchers have demonstrated they can wire virus batteries at the nanoscale, they intend to pursue even better batteries using materials with higher voltage and capacitance, such as manganese phosphate and nickel phosphate, said Belcher. Once that next generation is ready, the technology could go into commercial production, she said.
  4. An important piece in clean coal technology – carbon sequestration – may have a sparkling future. New research shows that for thousands of years carbon dioxide has been stored safely and naturally in underground water in gas fields saturated with the greenhouse gas. The findings – published in Nature – bring carbon capture and storage a step closer. Politicians are committed to cutting levels of atmospheric carbon dioxide to slow climate change. Carbon capture and storage is one approach to cut levels of the gas until cleaner energy sources are developed.  Naturally-occurring carbon dioxide can be trapped in two ways. The gas can dissolve in underground water – like bottled sparkling water. It can also react with minerals in rock to form new carbonate minerals, essentially locking away the carbon dioxide underground.  Real studies to support either of these predictions had, until now, been missing.  This study showed that carbon dioxide has been stored naturally and safely in underground water in natural gas fields.  This new approach will be essential for monitoring and tracing where carbon dioxide captured from coal-fired power stations goes when we inject it underground – this is critical for future safety verification.
  5. World’s first nanofluidic device with complex 3-D surfaces. Researchers at the Commerce Department’s National Institute of Standards and Technology (NIST) and Cornell University have capitalized on a process for manufacturing integrated circuits at the nanometer (billionth of a meter) level and used it to develop a method for engineering the first-ever nanoscale fluidic (nanofluidic) device with complex three-dimensional surfaces. As described in a paper published in the journal Nanotechnology, the Lilliputian chamber is a prototype for future tools with custom-designed surfaces to manipulate and measure different types of nanoparticles in solution.  Among the potential applications for this technology: the processing of nanomaterials for manufacturing; the separation and measuring of complex nanoparticle mixtures for drug delivery, gene therapy and nanoparticle toxicology; and the isolation and confinement of individual DNA strands for scientific study as they are forced to unwind and elongate (DNA typically coils into a ball-like shape in solution) within the shallowest passages of the device.

Filed under: Health, Science, Technology, ,

One Response

  1. […] Samuel presents A Glimpse Into the Future where he describes five research findings as published in various scientific journals representing […]

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s

%d bloggers like this: